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constraint. For this reason, the interaction of the tracked
front with the underlying hyperbolic grid is nontrivial andIn this paper we describe a numerical algorithm for the study of

shear band, formation and growth in two-dimensional antiplane we develop techniques to allow for the growth of the shear
shear. The constitutive model uses a non-associative flow rule. The band by more than one cell per time step.
numerical scheme is based on a Godunov method for updating the In particular, the model used in this paper includes a
velocity, while the stress is updated via integration along particle

non-associative flow rule. Non-associative flow rules arepaths. The scheme is coupled with a front tracking algorithm for
recognized as an important tool in the modeling of defor-careful evolution of the shear bands. The main challenges are the

non-hyperbolicity of the shear band formation and growth (front mations in granular materials (see Vardoulakis and Graf
tracking avoids the catastrophic effects of the loss of hyperbolicity [21]). This present model has been studied by Schaeffer
in the Godunov-type numerical scheme), the existence of endpoints [13] and offers a criterion for the formation of shear bands
for the shear band (the tracked front does not separate the computa-

and a description of the evolution of the material insidetional domain into disconnected regions), and the non-hyperbolic
the band.rate of growth of the shear band. We give examples of the success

of the algorithm and show convergence tests. Q 1997 Academic Press The non-associativity of the flow rule implies ill-posed-
ness, in the sense of Hadamard, at certain levels of stress.
Schaeffer [13] formulated a relation between ill-posedness

1. INTRODUCTION and the formation of the shear bands. We will use this
formulation in the numerical algorithm described in this

The main goal of this paper is to describe an application paper.
of front tracking to the numerical resolution of deforma- Another feature of non-associative flow rules is the pos-
tions in granular materials with shear bands. The problem sibility that plastic waves travel faster than elastic waves
we consider relates to two-dimensional shearing, where of the same family. This phenomenon had been previously
the motion is homogeneous in the x3 direction. In previous pointed out by Sandler and Rubin [12] as a potential diffi-
papers we carried out a preliminary study of tracking of culty for the design of numerical algorithms. As it relates
shear bands for one-dimensional problems [6, 11]. In those to the algorithm described in this paper, the difficulty lies
problems the shear bands were non-hyperbolic fronts, as in the non-existence of solutions to one-dimensional Rie-
in the present case. An important difference is that in one mann problems in the coordinate directions. The regions
dimension the shear band is a point on the real line and where these solutions may not exist are explored in [5],
separates the computational domain in two disjoint re- together with possible modifications to the wave structure
gions; while in two dimensions, the shear band is a curve (inclusion of plastic shocks) or to the model itself which
in the plane which may or may not separate the domain will eliminate the regions of non-existence while main-
into disjoint regions. Furthermore, the growth of the shear taining the ill-posedness conductive to shear banding. At
band at the end points presents a new computational chal- present we wish to focus on the novel application of front
lenge: the non-hyperbolic nature of the band means that tracking to shear band models and not on the model itself.
the evolution of the end points is not controlled by a CFL We will assume that the plastic wave speeds are always

lower than the elastic wave speeds and, for the examples
1 Supported by NSF Grant DMS 9201115, which includes funds from in this paper, we will check that it is the case when solving

AFOSR. E-mail address: garaizar@math.ncsu.edu. This paper was written Riemann problems in the coordinate directions.
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The deformations studied in this paper are governed2 Supported by NSF Grants DMS 9201034, DMS 9201361, DMS
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relations are not expressed in conservation form for plastic could propagate at arbitrary speed and the growth of the
band would not be limited by the CFL condition. In partic-deformations. For levels of stress below a certain critical

value, the system of equations given by the conservation ular, an ideal test could be chosen in which the end points
propagate at infinite speed. Thus, it is not possible to as-of momentum and the constitutive relations is hyperbolic,

although not in a conservation form, in general. The nu- sume that the end points at the conclusion of a time step
are near the position of the end points at the beginning ofmerical algorithm used in this paper is of Godunov type

for the updating of the velocity (conservation of momen- the time step. To allow the front to propagate at the proper
speeds (probably in excess of the material wave speeds),tum) and the stress whenever possible (elastic constitutive

relations). Otherwise (plastic constitutive relations), the we use an iterative process for fractional time-steps. At
the end of each substep only one new cell is allowed tostress is updated with an integration along particle paths

(as in [17, 18]). be intersected by shear bands, and during each substep we
update all cells where the shear band is likely to growWhen the material reaches a critical value of loading,

shear banding occurs. While the overall deformation is and those where it already exists. This iterative process,
although it seems costly in efficiency, is not so since thedescribed by a hyperbolic system of equations, hyperbol-

icity is lost at the points where shear banding occurs. At iterative process is performed only in regions surrounding
the shear bands and potential new bands and only whilethese points, the deformation is described by jump rela-

tions in a manner similar to shock hugoniots. From a nu- the shear bands are growing. Furthermore, it achieves the
added function of eliminating spurious band formation andmerical point of view, shear bands are treated as internal

boundaries. When a shear band is initiated, the orientation accounting for the immediate effects of the new bands on
the nearby cells.of the band is obtained from a critical loading criteria

that provides the direction of planar waves for which ill- The paper is organized as follows: first we describe the
equations governing the deformation and the evolution ofposedness first occurs.

Once the shear band is formed, the behavior of the the shear band; then we describe the approximate Riemann
solver, the difference scheme for hyperbolic regions, anddeformation in the regions near the shear band is of pri-

mary interest. The shear band may continue to load while the tracking algorithm for shear bands. We finish with an
example of the formation and evolution of a shear band.simultaneously a relief front propagates from the shear

band in the transverse direction [13]. This creates a region
2. EQUATIONSof elastic unloading contiguous to the band, although we

still expect that the material ahead of the unloading front
We consider a model for antiplane shearing that was(including the endpoints of the band) is loading. A sharp

proposed by Schaeffer [13] to study the formation of shearresolution of the deformation at the near the shear band
bands in granular materials. The fundamental variablesis necessary, in order to (a) accurately describe the localiza-
are the Cauchy stress and the velocity. In antiplane shear-tion of the deformation around the shear band and (b)
ing the deformation is homogeneous in the direction ofaccurately establish the growth of the band. Due to the
motion. We fix this direction to be that of the z-axis. Thennon-hyperbolic nature of the band itself, simple capturing
the velocity and stress will depend only on two dimensionsof the fronts does not seem to apply. In our proposed
of space x 5 (x1 , x2) and the time t. The velocity vectortracking algorithm, the evolution of the shear band is com-
has only one non-trivial component v in the z-direction.puted separately from the evolution in the rest of the do-
The components of the Cauchy stress tensor relevant tomain, where the deformation is hyperbolic. Both algo-
the deformation are T31 and T32 . We define a dimensionlessrithms, the hyperbolic scheme, and the tracking of the
stress vector t 5 (t1 , t2)T by identifying t1 5 T31 andfront, interact in a non-trivial manner, providing each other
t2 5 T32 . These variables are subject to equations express-with the appropriate flux quantities necessary to perform
ing the conservation of momentumthe time updates at the cells near the shear band and

the band itself. This technique was previously tested for a
(1)­tv 5 c2 div t,

simpler one-dimensional model [6] for which the analytical
results were available with great success. where c is the speed of elastic waves. The constitutive

The tracking techniques that we use near the shear band relations take different forms for elastic and plastic defor-
loosely follow those described by Chern and Colella in mations. We assume that the stress rate satisfies the equa-
[2], with modifications to adjust for the properties of the tions of linear eleasticity during an elastic deformation,
tracked front. A first modification will appear in the treat-
ment of ‘‘flux redistribution’’ near the end points of the (2)­tt 5 grad v,
band, since at that point there is ambiguity about the mean-
ing of the regions to the left and right of the front. Also while for plastic deformations the constitutive relations are

expressed assince the shear band is not a hyperbolic front, the endpoints
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occurs. For stress on that locus, t 5 cc(cos u, sin u)T,SI 1
1

h(utu)
Rtt TD ­tt 5 grad v. (3) the direction jc of the waves such that b ? jc 5 0 is the di-

rection bisecting the angle made by t and Rt, that is jc 5
(cos(u 2 a)/2, sin(u 2 a)/2)T. Following [13], we use ill-Here h(utu) is the hardening modulus, which we assume
posedness as the criteria to introduce shear bands in thesatisfies h9 , 0 and h(1) 5 0. Also R is the rotation matrix
deformation.(cos a sin a

2sin a cos a). The parameter a in the rotation matrix R char-
acterizes the degree of non-associativity in the model. 2.1. Shear Band

The change from elastic to plastic behavior is described
The loss of hyperbolicity for system (5) is associatedin terms of a yield condition of Von Mises type. For later

with the formation of shear bands. We idealize a shearuse we define a measure of the accumulated stress as
band as a ‘‘stationary’’ discontinuity in a weak solution of
(5). The shear band is stationary in the sense that once itc(t, x) 5 max

0#s#t
(ut(s, x)u). (4)

occupies a location in the space plane, it will do so for the
rest of the process; in that sense we would say that the

We say that the material is deforming plastically if ­tut(t, discontinuity propagates with zero speed. This does not
x)u . 0 and ut(t, x)u 5 max0#s#t(ut(s, x)u); otherwise we say preclude the growth of the band as it extends at the en-
that the material is deforming elastically. points. Schaeffer [13] proposes a description of the defor-

For the scope of this paper, instead of considering the mation at the shear band where the system is replaced by
deformation as governed by two alternative systems (1), a set of jump discontinuities. For n the unit normal to the
(2) and (1), (3), we will combine both and express the band, we express the stress in terms of a coordinate system
resulting system as aligned with the shear band: s 5 t ? n is the normal

component of the stress and g 5 t ? n' is the transverse
­tv 5 c 2 div t (5a) component. The constitutive assumptions are:

­tt 5 A(t) grad v (5b) (i) the velocity is linear across the shear band and
the velocity gradient (in a direction normal to the band)
is approximated by an average jump, ­nv 5 [v]/d, wherewhere A(t) 5 I if the deformation is elastic and A(t) 5
[v] 5 vbr 2 vbl is the jump in the velocity across the bandI 2 (h 1 utu2 cos(a))21 Rtt T if the deformation is plastic.
(vbl , vbr are the velocities at the left and right boundary ofWe study the speed and structure of planar waves. For
the shear band) and d is a ‘‘grain diameter’’ parameter;waves traveling in a fixed direction j, the velocity and

stress variables can be considered to depend only on time, (ii) the normal component of the stress is continuous
and the space coordinate n 5 j ? x. In this case system (5) across the band;
simplifies to (iii) inside the shear band, the transverse component

g jumps to a value larger than either of the one sided limits.

At the shear band, Eq. (5b) is replaced by a similar consti-­tSv

t
D5S0 c 2j T

b 0
D ­nSv

t
D, (6)

tutive relation

where b 5 A(t) ? j. The eigenvalues associated with this
system are l 5 0 and l 5 6cÏb ? j, with corresponding ­tSsb

gb
D5 A(sb , gb)S[v]/d

0
D , (8)

eigenvectors (here j ' represents a vector orthogonal to j)

and the supplementary relations relations describing the
speed s of the shear band and continuity of sb ,S 0

j 'D , S2l

b
D . (7)

(9)s 5 0, [s] 5 0.
A consequence of introducing non-associativity in the

flow rule is the onset of ill-posedness in the sense of Hada- These jump conditions play a similar role to Rankine–
Hugoniot conditions in gas dynamics, but we must notemard; that is, there is a loss of hyperbolicity in system (6)

whenever b ? j , 0. As it is shown in [13], for a given stress that, unlike Rankine–Hugoniot conditions, these jump
conditions involve derivatives. We also point out that Eq.t hyperbolicity (b ? j . 0) is preserved for all directions j

if and only if h(utu) $ utu2 sin2(a/2). From the properties (8) provides the evolution of the stress inside the shear
band. It is easy to check that during plastic loading ­ts ,of h, there is a unique cc such that h(cc) 5 (cc)2 sin2(a/2)

and hence a locus utu 5 cc for which ill-posedness first 0 and therefore it is possible to match plastic loading inside
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the shear band with elastic unloading outside the shear proceed to give a more detailed description we should
notice that non-associative flow rules may imply that forband.
certain values of stress cp . c. In this model, this is the

2.2. Eigenvalues and Eigenvectors case for values of the stress (in the second and fourth
quadrants) that satisfy t2/t1 , tan(a 1 f/2). This phenom-System (5) is expressed in quasilinear form as
ena has been pointed out in different contexts (see, for
example, [9, 12, 14]) as a feature and difficulty on non-(10)Ut 1 B1 Ux1

1 B2Ux1
5 0,

associative flow rule models. In the scope of this paper we
exclude plastic shocks and therefore limit the region ofwhere
existence for the solutions described by the numerical ex-
amples. In the computations presented in this paper, we
check that the solution remains in the region where the
solution to Riemann problems exist and do not includeU 5 1

v

t1

t2

2 , B1 5 1
0 c 2 0

b11 0 0

b21 0 0
2 , B2 5 1

0 0 c 2

b12 0 0

b22 0 0
2 .

shocks (this is cp # c). Existence of solutions of the
Riemann problem for all data and possible modifications
to the model are discussed in [5]. These modifications

The coefficients bij take different values for elastic and will change the model in order to assure that
plastic deformations: bij 5 dij if the deformation is elastic cp # c for all values of stress while retaining the regions
and bij 5 dij 2 (Rt)itj/(h 1 utu2 cos a) if the deformation of ill-posedness that imply the formation of shear bands.
is plastic, where Rt 5 ( t1 cos a 1 t2 sin a

2t1 sin a 1 t2 cos a
). The corresponding In what follows we assume that cp # c and study the

solution to Riemann problems. These solutions are de-eigenvalue and left eigenvector matrices for B1 are
scribed by means of the wave curves. For each wave packet,
the wave curve is the locus of all states behind the wave
packet that can be connected via admissible waves to a
given state ahead of the wave packet. Since shock wavesE1 ;1

2cÏb11 0 0

0 0 0

0 0 cÏb11
2, X1 ;1

cÏb11 0 2cÏb11

b11 0 b11

b21 1 b21
2,

are not present in this model, the wave curves are defined
as the integral curves to the vector fields defined by the
eigenvectors (7) of the system. We remark that these eigen-

and similarly for B2 vectors are not continuous on elastic–plastic transitions.
This makes our definition of wave curves a slight general-
ization of that of rarefaction wave solutions for a general
hyperbolic system (see [10, 16] for a detailed description).E2 ;1

2cÏb22 0 0

0 0 0

0 0 cÏb22
2, X2 ;1

cÏb22 0 2cÏb22

b12 0 b12

b22 1 b22
2.

We start by justifying a particular parameterization of the
wave curves. The projection of the wave curves, for both
left and right moving waves, onto the stress plane is given
by the solution curves of the system of two ordinary differ-These relations show that the system is hyperbolic if bii .
ential equations0. We will also make use of these matrices in developing

our numerical method.

dt

ds
5Sb11(t)

b21(t)
D . (11)3. RIEMANN SOLVER

The difference scheme described in Section 5 relies on
approximate solutions to Riemann problems in one dimen- As shown in [13], these solution curves are symmetric with

respect to the origin (see Fig. 1) and approach an attractorsion. In what follows we will describe the solution to Rie-
mann problems in the x1-direction and an algorithm for A (resp. F, by symmetry) in the first (resp. third) quadrant.

The curves ABC and DEF represent the locii of the valuesthe approximate solution to such initial value problem.
As in Section 2, setting j 5 (1, 0), the characteristic of stress satisfying b11 5 0 and the critical value of stress

cc is the length of the stress vector t at either E of B (inspeeds of waves in the x1 direction are 6c for elastic waves
and 6cp for plastic waves, where cp 5 cÏb11 . While cp # Fig. 1 we assume that the stress has been rescaled as to

satisfy utu # 1, as in [13]). The (projection of the) wavec, the wave structure of the solution to the Riemann prob-
lem has a simple description as two packets of waves, each curves (12) will intersect the curves ABC (resp. DEF) at

some point where t1 5 t M
1 (resp t m

1 ).containing two waves: a linear elastic wave that places the
stress at most on the yield curve, followed by a plastic In a purely one-dimensional model, those points of inter-

section would correspond to shear band initialization,rarefaction continuing from there (see [6, 11]). Before we
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the formula for plasticity). The total stress satisfies c(s,
U 0) 5 c 0 for usu # t e

1 and c(s, U 0) 5 ut(s, U 0)u for
usu . t e

1 . We notice that for usu # t e
1 the stress satisfies

ut(s, U 0)u , c(s, U 0); that is, the wave curves are elastic,
b11 5 1, and b21 5 0.

Similarly, the right moving wave curves are parameter-
ized as

WR(s, U 0) 5 1
v(s, U 0)

t1(s, U 0)

t2(s, U 0)
2

(13)

5 1
v0 2 es

t 0
1
chÏb11(h, t2)j21 dh

s

t 0
2 1 es

t 0
1
b21(h, t2) dh

2 .
FIG. 1. Wave curves in a stress plane.

A solution to the Riemann problem with left and right
while in the present two-dimensional model those points states U L and U R is given by the intersection of the projec-
are beyond the circle utu 5 cc of ill-posedness. This permits tions of the wave curves WL(s, U L) and WR(s, U R) onto
us to study the wave curves when the t1 component of the the v 2 t1 plane.
stress is contrained to satisfy t m

1 , t1 , t M
1 and therefore Since the wave curves WL and WR are bounded, it is

a parameterization with respect to t1 is admissible. possible that such an intersection does not exist (see [4,
We construct our Rieman problem solution as follows: 6]). For these left and right states, the solution to the initial

Given an initial state value problem is not self-similar and includes a shear band
(with the corresponding relief fronts) connecting the tradi-
tional elasto-plastic waves (see [4, 6, 11]).

For the purpose of Section 5 we need to develop anU 0 5 1
v 0

t 0
1

t 0
2
2 approximate Riemann solver. We approximate the wave

curves by piecewise linear curves. Since the portion of
the wave curves corresponding to elastic deformations iswith total stress c 0, we define t e

1 5 Ï(c 0)2 2 (t 0
2)2 as the

linear, we retain this portion while we linearize the pieceelastic limiting value of t1 . That is, a stress of the form
of the wave curve that corresponds to a plastic deforma-t 5 (t1 , t 0

2) is inside the yield curve (and the corresponding
tion. This linearization is made about the first point ofdeformation is elastic) if and only if ut1u # t e

1 . The (left
intersection of the wave curve with the yield curve; this ismoving) wave curves passing through U 0 are parameter-
t 5 (6t e

1 , t 0
2). The v and t2 components of the approximateized by t1 as

wave curves AWL(t1 , U 0) for left moving waves are ex-
pressed as

WL(s, U 0) 5 1
v(s, U 0)

t1(s, U 0)

t2(s, U 0)
2

(12)
v 5 v0 1 cv(t1 , t 0

1 , t 0
2 , t e

1) (14)

t2 5 t 0
2 1 ct2

(t1 , t 0
1 , t 0

2 , t e
1) (15)

51
v 0 1 es

t 0
1
chÏb11(h, t2)j21 dh

s

t 0
2 1 es

t 0
1
b21(h, t2) dh

2 and similarly for the right moving waves AWR(t1 , U 0):

v 5 v0 2 cv(t1 , t 0
1 , t 0

2 , t e
1) (16)

for t m
1 # s # t M

1 (the reader can consult Trangenstain
t2 5 t0

2 1 ct2
(t1 , t 0

1 , t 0
2 , t e

1). (17)and Pember [19] for a discussion of the derivation of
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bands (tagged cells) and the surrounding cells. The data
for the hyperbolic grid is associated with the center of the
cells. Clearly, at the tagged cells, this data will be inaccurate
since the hyperbolic grid ignores the presence of the shear
bands. On the tagged cells, the data for the interface struc-
ture is associated to the subcells at both sides of the band
and to the band itself (a more detailed description will be
given in later sections). The cell-centered states of the
hyperbolic grid are updated using a difference scheme of
second-order accuracy. This process will give an incorrect
result at the tagged cells (wrong data) and likely at the
surrounding cells too. The latter is the case for several
reasons: (i) the fluxes at boundaries of tagged cells are
computed as solutions of Riemann problems with incorrect
data coming from inside of the tagged cell, (ii) second order
algorithms use the data of neighboring cells (including the
tagged cells) for calculation of the slopes; and (iii) the
tracking algorithm produces ‘‘extra’’ mass from the cellsFIG. 2. Grid and shear band.
affected by the tracked front (tagged cells) that needs to
be redistributed onto the neighboring cells.

Thus the algorithm for the updating of cell states isHere the functions cv and ct2
are defined as

organized in two loops: (i) first we perform a loop over
the whole hyperbolic grid where the cell-centered statescv(t1 , t0

1 , t0
2 , te

1) are updated at each cell in the grid using the difference
scheme described in Section 5; (ii) next we correct the data
in all the tagged cells (traversed by the shear bands) and

55
c(2t e

1 2 t0
1) 1 c(t1 1 te

1)/Ïb11(2te
1 , t0

2) if t1 , 2t e
1 ,

c(t1 2 t0
1) if 2te

1 # t1 # te
1 ,

c(te
1 2 t0

1) 1 c(t1 2 te
1)/Ïb11(t e

1 , t0
2) if t1 . t e

1 ,
their surrounding cells as described in Section 6. Finally,
when an updated state has the stress crossing the locus of
ill-posedness (utu 5 cc), we incorporate that cell (the cell(18)
is tagged) into the interface structure. In Section 6.2 we
describe this process in detail.

ct2
(t1 , t0

1 , t0
2 , t e

1) 5 5
b21(2te

1 , t0
2) (t1 1 t e

1) if t1 , 2te
1 ,

0 if 2t e
1 # t1 # t e

1 ,

b21(t e
1 , t0

2) (t1 2 te
1) if t1 . te

1 .
5. DIFFERENCE SCHEME

(19) We now describe a numerical algorithm for the integra-
tion of the equations

We define the approximate Riemann solver operator
RP(U L, U R) which for a pair of left and right states, U L

vt 5 c2(t1)x1
1 c 2(t2)x2

, (20)
and U R, assigns the state defined by the intersection of
the projections of the piecewise linear curves AWL(s, U L)
and AWR(s, U R) onto the vt1-plane. tt 5 A(t)Svx1

vx2

D , (21)

4. OVERALL DESCRIPTION OF THE ALGORITHM

The numerical algorithm is best described as a superpo- where the state U n
ij is the average of U 5 (v, t1 , t2)T in

the cell [(i 2 As)Dx1 , (i 1 As)Dx1] 3 [( j 2 As)Dx2 , ( j 1 As)Dx2]sition of two complementary algorithms: one dealing with
the regions of the granular material where the deformation at time tn 5 nDt. The superindex n 1 As indicates that the

state is evaluated at an intermediate time t 5 tn 1 Dt/2, andis continuous (no shear band present) and the other dealing
with regions of the material where discontinuities (shear the subindex (i 1 As, j) corresponds to variables evaluated at

the spatial point (x1 , x2) 5 ([i 1 As]Dx1 , jDx2). The statebands) occur.
We define a basic rectangular grid (we will refer to it as U n11/2

i11/2, j is taken to be the average value of U on the space
time rectangle defined by x1 5 [i 1 As]Dx1 , [ j 2 As]Dx2 ,the hyperbolic grid) and tag all those cells traversed by a

shear band (see Fig. 2). On this hyperbolic grid we superim- x2 , [ j 1 As]Dx2 , tn , t , tn 1 Dt (see Fig. 3). U n11/2
i, j11/2

is defined similarly.pose an interface structure which comprises all the shear
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FIG. 3. States associated to the grid.

The equation for the conservation of momentum (20) of predicted states to the left the right of the cell bound-
aries, Ũ n11/2,S

i11/2, j and Ũ n11/2,S
i, j11/2 for S 5 L and R, via a characteris-can be integrated with a conservative difference

tic tracing algorithm designed to provide second-order ac-
curacy. Then predicted states at the boundaries are

vn11
ij 5 vn

ij 1
Dt

Dx1
h(t1)n11/2

i11/2, j 2 (t1)n11/2
i21/2, jj

(22)
evaluated as solutions to Riemann problems. (ii) Correc-
tion of the predicted left and right states at the boundaries
in the x1 direction by taking into account the effect of1

Dt
Dx2

h(t2)n11/2
i, j11/2 2 (t2)n11/2

i, j21/2j.
transverse flow. The predicted states at the boundaries in
the x2 direction provide such correction. We do similar

The equation for the constitutive relations (21) is not in steps for the x2 boundaries.
conservation form during plastic deformations. We will We will show in detail this process for cell boundaries

parallel to the x2-axis. A similar calculation provides theintegrate them along a particle path [18]. Since there is no
states at the cell boundaries parallel to the x1-axis.motion on the x1 x2-plane, the particle path is a line with

The calculation of U n11/2,L
i11/2, j and U n11/2,R

i11/2, j is based on aconstant x1 and x2 coordinates, namely an ordinary differ-
Taylor expansion of U(x1 1 Dx1/2, x2 , t 1 Dt/2) where weential equation:
have used Eq. (10) to solve Ut in terms of Uxi

’s:

­t t 5 A(t)S(vn11/2
i11/2, j 2 vn11/2

i21/2, j)/Dx1

(vn11/2
i, j11/2 2 vn11/2

i, j21/2)/Dx2
D . (23) U Sx1 6

Dx1

2
, x2 , t 1

Dt
2 D

We notice that if the deformation is elastic, the integra- P U(x1 , x2 , t) 1
1
2 S6I 2 B1

Dt
Dx1

D Dx1 S­U
­x1
D

ij
(25)

tion of (23) takes a form similar to (22)

2
Dt
2

B2 S­U
­x2
D

ij
.

t n11
ij 5 t n

ij 1
Dt

Dx1
Svn11/2

i11/2, j 2 vn11/2
i21/2, j

0
D

(24)
This calculation is performed in two steps in a ‘‘predictor–
corrector’’ fashion. First we calculate the predicted values1

Dt
Dx2

S 0

vn11/2
i, j11/2 2 vn11/2

i, j21/2
D .

Ũ n11/2,L
i11/2, j and Ũ n11/2,R

i21/2, j for the simplified equation obtained
by dropping from Eq. (25) the terms that include x2 deriva-

The values vn11/2
i11/2, j and vn11/2

i21/2, j , and similarly for t, corre- tives (that is, (Dt/2) B2 (­U/­x2)ij),
spond to velocity and stress at the cell boundaries for an
intermediate time t 5 tn 1 Dt/2. These values are obtained U(x1 6 Dx1/2, x2 , t 1 Dt/2)

(26)as solutions to Riemann problems for appropriate left and
right states which will be described below. P U(x1 , x2 , t) 1

1
2 S6I 2 B1

Dt
Dx1

D Dx1 S­U
­x1
D

ij
.

The scheme described above is based on the donor cell
upwind scheme [3, 17, 18]. The calculation of the ‘‘flux’’
states U n11/2

i11/2, j , U n11/2
i , j11/2 is organized as follows: (i) calculation In this equation the variable x2 is constant and therefore
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we may consider the problem (and only at this step) of Remark 1. We notice that during the calculation of
Ũ n11/2,L

i11/2, j and Ũ n11/2,R
i21/2, j , the stress may lie outside the regioncalculating of the predicted values Ũ n11/2,L

i11/2, j and Ũ n11/2,R
i21/2, j as

purely one-dimensional. These predicted values are later of validity. In such a case we will lower the order of the
algorithm at such cells to first order; that is, we setcorrected by incorporating the transverse flow effects of

the (Dt/2) B2 (­U/­x2)ij terms. The final (and corrected) Ũ n11/2,L
i11/2, j 5 U n

ij and Ũ n11/2,R
i21/2, j 5 U n

i, j . This is necessary in order
to remain inside the region of hyperbolicity during thevalues U n11/2,L

i11/2, j and U n11/2,R
i11/2, j have been obtained via a two-

dimensional algorithm and satisfy the same stability prop- resolution of the Riemann problems at the cell-boundaries.
As a justification of this step we should notice that thiserties as the one-dimensional problem (that is, the CFL

number is 1). situation will occur near the shear band or at those points
where the shear band is about to be formed. In any case

5.1. CHARACTERISTIC TRACING a drop in accuracy to first order is reasonable since that is
the formal order of accuracy maintained at the tracked

We describe the calculation of the predicted values of the front.
states at the cell boundaries. A first step is the calculation of

From these predicted values of the left and right statesthe gradient term (­U/­x1)ij , an approximation of ­U/­x1
we obtain a predicted value of U at the boundary as ain the ij-cell. This is done via a slope limiter algorithm that
solution to a Riemann problem, Ũ n11/2

i11/2, j 5 RP(Ũ n11/2,L
i11/2, j ,guarantees second-order accuracy and eliminates artificial

Ũ n11/2,R
i11/2, j ). This solution is obtained as described in Sectionoscillations [20]. We write (­U/­x1)ij 5 muscl(U n

i11, j 2
3. A similar process is followed to obtain Ũ n11/2

i, j11/2 .U n
i, j, U n

i, j 2 U n
i21, j), where the function muscl is defined as

(the operations are performed component-wise)
5.2. Transverse Correction

In Eq. (26) we have ignored the effects of the flow in
muscl(a, b) ; sign(a) 1 sign(b)

2
min S2uau, 2ubu, ua 1 bu

2 D . the x2 direction when we dropped the x2 terms of Eq. (25).
We approximate (­U/x2)ij by (Ũ n11/2

i, j11/2 2 Ũ n11/2
i, j21/2)/Dx2 and

correct the predicted values Ũ n11/2
i11/2, j and Ũ n11/2

i21/2, j :We write

U n11/2,L
i11/2, j 5 Ũ n11/2,L

i11/2, j 2
1
2

DtB2
Ũ n11/2

i, j11/2 2 Ũ n11/2
i, j21/2

Dx2
(29)

Dx1 S­U
­x1
D

ij
5 1

[v] 1
ij

[t1] 1
ij

[t2] 1
ij

2 .

U n11/2,R
i11/2, j 5 Ũ n11/2,R

i11/2, j 2
1
2

DtB2
Ũ n11/2

i11, j11/2 2 Ũ n11/2
i11, j21/2

Dx2
. (30)

Next we use the matrix of left eigenvectors X1 to decom-
Finally, we obtain the states at the boundary cellspose the last term of (26) into the basic waves (B1 5

U n11/2
i11/2, j 5 RP(U n11/2,L

i11/2, j , U n11/2,R
i11/2, j ).X1diag(2cÏb11 , 0, cÏb11)X 21

1 ). Only those waves which
travel toward the corresponding boundary (and therefore Remark 2. A difficulty in computations of elastic–
will affect the states there) are retained. We now write the plastic deformations is that during a one timestep update
predicted values of U n11/2,L

i11/2, j and U n11/2,R
i21/2, j as the initial stress may be elastic while the stress at the end

of the timestep could be beyond the yield curve. This
problem is traditionally solved either by correcting the
stress with a backward projection that places the stress onŨ n11/2,L

i11/2, j 5 U n
ij 1 S1 2 cÏb11

Dt
Dx1

D 1
2cÏb11

b11

b21

2 the yield surface or by the use of differential algebraic
equations where the yield condition is the algebraic con-
straint. In our case this difficulty is avoided, since the transi-
tion from elastic to plastic can be resolved during the inte-S2

[v]1
ij

cÏb11

1
[t1]1

ij

b11
D (27)

gration of (23). We denote

(Dv)ij 5S(vn11/2
i11/2, j 2 vn11/2

i21/2, j)/Dx1

(vn11/2
i, j11/2 2 vn11/2

i, j21/2)/Dx2
DŨ n11/2,R

i21/2, j 5 U n
ij 2 S1 2 cÏb11

Dt
Dx1

D 1
cÏb11

b11

b21

2
and the auxiliary function f(z) 5 t n

ij 1 z(Dv)ij . If the result
of integrating (23) as an elastic deformation (A 5 I), f(Dt),S [v]1

ij

cÏb11

1
[t1]1

ij

b11
D . (28)

is beyond the yield surface, the integration of (23) is done
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FIG. 4. States and regions associated to bonds.

in two steps: (i) We define 0 # Dt 0 # Dt as the intermediate 6.1. Integration Algorithm near the Shear Band
time increment such that the stress given by f(Dt 0) is at

We denote by (ib , jb) the index of a generic tagged cell
yield and integrate (23) up to Dt 0, while the deformation

(intersected by a shear band). We refer to the cell as Cbis elastic. (ii) We integrate (23), as a plastic deformation,
and the bond (piece of the band in the Cb) as Ib . In the

for t n 1 Dt 0 # t # t n 1 Dt with initial values tij(t n 1
process of tracking the bond Ib we will need to access

Dt 0) 5 f(Dt 0). This integration is done for the polar repre-
data of the states on the neighboring cells. We define an

sentation of the stress t1 5 c cos u and t2 5 c sin u and,
auxiliary box of indices, centered at (ib , jb), as B 5 [ib 2

since utu 5 c, the stress is maintained at yield during the
1, ib 1 1] 3 [ jb 2 1, jb 1 1], and the same box excluding

integration. The yield condition f(Dt 0) 5 c n
ij provides a

the center as Bo 5 B 2 (ib , jb). Since the shear band is an
constraint equation for Dt 0, ut n

ij 1 z(Dv)iju2 5 (c n
ij)2, from

oriented curve, we can define a normal to the band, n and
which we compute Dt 0 explicitly. This is Dt 0 5 (2A 1

left and right sides to the band. The two disjoint regionsÏA2 1 BC)/C, where A 5 t n
ij ? (Dv)ij , B 5 (c n

ij)2 2 ut n
iju2, in Cb separated by the band are referred as the left, C L

b ,
and C 5 u(Dv)iju2. and right, C R

b , subcells (see Fig. 4a).
These subcells have states AU L,n and AU R,n associated

6. TRACKING OF THE SHEAR BAND with them at time t 5 tn . Other states associated with the
bond are:We now describe the tracking algorithm at the shear

bands. From a computational point of view, the shear band —U n
b, the state at the shear band at time t 5 tn ,

is idealized to have infinitesimal width while the physical —U L
b and U R

b , the temporary states at the sides of the
width is kept as a parameter d in the equation of evolution band at time t 5 tn 1 Dt/2. These states are used to calculate
of the band (8). With this idealization, the shear band will the temporary flux-like quantities (v and t in the right-
be constrained to be (width-wise) inside one cell. This will hand side of (20)–(21)) at the shear band.
present no difficulties for the study of the overall effect of
the shear band on the domain at large. We organize the description of the method as follows:

(a) averaging states near the band, (b) updating the statesThe shear band is approximated as an oriented piecewise
linear curve in the x plane. The intersection of the band at the band, (c) recalculation of fluxes at and near the

band, (d) redistribution of excess numerical mass, and (e)with a cell is a linear segment that divides the cell in two
disjoint regions. That is, the shear band is not allowed to integration on subcells and cells near the band.

Locally, for the cells surrounding the bond, we also de-end in the interior of a cell. These segments are called
bonds and the intersection of the shear band with grid fine left and right states: for (i, j) [ B and S 5 L, R;

U S
i, j 5 AU S,n

i, j if the shear band intersects the (i, j) cell andlines are called points.
The approach used here follows traditional front U S

i, j 5 U n
i, j otherwise. For cells next to the tips of the bands,

and only for the purpose of assigning left and right areastracking techniques [2, 8] with modifications proper to this
problem: the tracked front is neither a hyperbolic wave to these cells, we extrapolate the band at its endpoints by

one or two cells in the direction of the last bond.nor does it divide the domain into unconnected domains.
The tracking algorithm consists of two major blocks: (a) (a) Averaging the states. In what follows, we will refer

to a left or right state with the index S 5 L, R. The areaupdating the states at and near the shear band and (b)
initialization and growth of the shear band. of the left and right subcells can be very small compared
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integration of (8), together with (4), from tn to tn 1 Dt with
initial data s n

b , gn
b , cn

b . The jump in velocity [v] in (8) is
approximated by [v] 5 ṽR

b 2 ṽL
b , where ṽS

b are the velocities
of the states at the sides of the band at time tn . These are
the states connected to AUS,n by a pack of waves moving
to the left (S 5 L) or to the right (S 5 R). They are given
by the solution to a Goursat–Riemann problem (similar
to a Riemann problem but defined on a quarter plane with
initial and boundary conditions) with initial values at t 5
tn determined by the side state AUS,n and the boundary
condition imposed on the shear band, s 5 s n

b . We calculate
ṽS

b by tracing one parameter (approximated) wave curves
FIG. 5. Bond initialization.

AW S. We write the stress components in AU S,n as s S
0 ,

gS
0 , and cS

0 and define the auxiliary quantity s S,e 5

Ï(c S
0)2 2 (s S

0)2. Then
to the area of a regular cell (Dx1 Dx2) and thus the states
U S associated to those regions would be suspect. We re-

ṽS
b 5 vS

0 2 (21)Scv(s n
b , s S

0 , gS
0 , s S,e), (31)place those states by a weighted average of the states asso-

ciated to cells (or subcells) contiguous to Cb , for the corre-
where (21)L 5 21 and (21)R 5 1 and cv is defined in (20).sponding side of the band. We use the following

(c) Calculation of fluxes. The next step is to calculateweighted interpolation:
the states US

b at the sides of the band at t 5 tn 1 Dt/2.
These states will be used to calculate fluxes on the side of

AU S,n 5
A S

ib , jb

Dx1 Dx2
U S 1 S1 2

A S
ib , jb

Dx1 Dx2
D o(i, j)[Bo A S

ijU S
ij

o(i, j)[Bo A S
ij

, the shear band. As in (b), the states US
b obtained from the

solution to a Goursat–Riemann problem, where this time
the data on the shear band is the value of s at t 5 tn 1

where A S
i, j is the area of the portion of the cell Ci, j to the

Dt/2. We approximate this value by s n11/2
b 5 (s n

b 1
S side of the band.

s n11
b )/2 and identify s R

b 5 s L
b 5 s n11/2

b . The other compo-
(b) Updating the states at the band. The evolution of nents of US

b are given by
the stress in the interior of the band is described in Section
2.1 by Eq. (8). There we defined s and g as the components ṽS

b 5 vS
0 2 (21)Scv(s S

b , s S
0 , gS

0 , s S,e) (32)
of the stress in a coordinate system aligned with the shear

gS
b 5 gS

0 1 cv(s S
b , s S

0 , gS
0 , s S,e). (33)band. We denote by s n

b , g n
b , c n

b the stress variables inside
the band at t 5 tn . The values of stress s n11

b , g n11
b , c n11

b ,
at time tn 1 Dt are calculated by means of a numerical The states Un11/2

i11/2, j and Un11/2
i, j11/2 were calculated in Section

FIG. 6. c and v contour lines at time t 5 0.0989.
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FIG. 7. c and v contour lines at time t 5 0.3956.

5, for cell edges in B, using incorrect data for the subcells the irregular cell CS
b , the momentum equation is inte-

of Cb . We proceed to recalculate these states, but this time grated to
we do it with first-order accuracy since that is the expected
accuracy at the tracked front. The correct states are ob- AS

ib , jb
[(vS)n11

ib , jb
2 (vS)n

ib , jb
] 5 Dt[d S

ib21/2, jb
(t S

1)n11/2
ib21/2, jbtained as in Section 5, for the left and right sides of the

2 dS
ib11/2, jb

(t S
1)n11/2

ib11/2, jb
1 d S

ib , jb21/2(t S
2)n11/2

ib , jb21/2 (34)band: US,n11/2
i11/2, j 5 RP(US,n

i, j , US,n
i11, j) and US,n11/2

i, j11/2 5 RP(US,n
i, j ,

2 d S
ib , jb11/2(t S

2)n11/2
ib , jb11/2 1 (21)S dbs S

b],US,n
i, j11). During the recomputation of the fluxes on cell

edges adjacent to the shear band, the transverse corrections
are not ignored. The stress vector on the band is expressed

where (21)L 5 21 and (21)R 5 1.
in terms of the components in the grid directions and (29)–

If we write MS
b for the RHS of (34) and Mi, j as the(30) are still valid.

corresponding quantity in (22), we would like to write
(d) Redistribution of numerical mass. For each cell

edge in the box B we have assigned a state for the portion
of the edge on each side of the shear band. We denote by (vS)n11

ib , jb
5 (vS)n

ib , jb
1

MS
b

AS
ib , jb

. (35)
dS

i11/2, j (resp. dS
i, j11/2) the length of the bond segment. For

FIG. 8. c and v contour lines at time t 5 0.5934.
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FIG. 9. Location of endpoints of shear band.

But, if AS
ib , jb

is too small, (35) would violate the CFL stabil- and the fact that the material presents a sharp discontinu-
ity in the displacement indicates that transfer of ‘‘mass-ity condition. Instead, we write
flux’’ across the discontinuity is not proper. The excess
numerical mass is distributed over all the cells sur-

(vS)n11
ib , jb

5 (vS)n
ib , jb

1
MS

b

Dx Dy
. (36) rounding the bond, with each cell receiving a contribution

to the numerical mass in (22) or (34) of M S
b(1 2

AS
ib, jb

/Dx Dy)/o(m,n)[Bo AS
m,n .This expression for (vS)n11

ib , jb
satisfies the CFL condition, but

when we compute the integral of the momentum equation (e) Integration near the band. Once the mass redistri-
in the region CS

b 3 [tn , tn 1 Dt] and compare with (34) we bution has been performed for each bond of each shear
observe that there is an excess of mass flux that is given by band, we update the cells affected by the shear bands.

If the cell (i, j) is in a box B for some bond of a shear
band, we recompute the velocity at the new level (t 5

MS
b 2 AS

ib , jb
((vS)n11

ib , jb
2 (vS)n

ib , jb
) 5 M S

b S1 2
AS

ib , jb

Dx DyD . (37) tn11), including the redistributed mass contributed by all
bonds over all shear bands: if the shear band does not
intersect Ci, j ,In order to be conservative in the region, we need to

put the above excess ‘‘mass-flux’’ back into the algorithm.
There are several techniques to carry out this mass vn11

i, j 5 vn
i, j 1

Mi, j

Dx Dy
1 O

S
O
F

(38)
redistribution. We partially follow the ideas of [2], in
the sense that we perform a weighted area redistribution,
with some variations. The fact that the front is not SM S

b S(1 2
AS

ib, jb

Dx DyD 1
o(m,n)[BoAS

m,n
Dhyperbolic precludes a wave decomposition at the front,

and, otherwise,

(vS )n11
i, j 5 (vS )n

i, j 1
M S

i, j

Dx Dy
1 O

F
(39)

SM S
b SS1 2

AS
ib, jb

Dx DyD 1
o(m,n)[BoAS

m,n
D .

The sum oF is over all the band bonds that affect the
(i, j) cell. A similar process is done for the stress update.

6.2. Initialization of the Shear Band Cell

As mentioned in Section 2, system (5) becomes ill-posed,
in the sense of Hadamard, when the total stress c reaches
a critical value cc . This ill-posedness is used as a criterion
for the formation (or extension) of shear bands. If c reachesFIG. 10. Location of initial shear band and test point on coarse grid.
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FIG. 11. Velocity as function of t at P(0.462963, 0.5).

the critical value cc , at a time t0 in the cell Cb , then a shear band, we check the orientation of the contiguous bands
and, if the orientations are similar, we connect both bandsband bond is placed in Cb, with orientation given by the

direction of ill-posedness of system (5). That is, if u is the via an interpolation process (see Fig. 5b).
The above process describes the formation of a newargument of the stress vector in the cell Cb, the normal to

the bond is given by n 5 (cos((u 2 a)/2), sin((u 2 a)/2))T. bond at exactly the onset of ill-posedness. In general we
expect that at the end of a timestep, the stress at oneThe exact placement of the bond in the cell is determined

differently if the bond corresponds to an existing shear or several cells could be beyond the locus of initial ill-
posedness, c n11

i, j $ cc, while at the beginning of the timestepband growing into the cell or to the formation of an entirely
new shear band. If the boundary of Cb contains the end- we had c n11

i, j , cc. We would expect new shear band bonds
to be created at some intermediate time according to thepoint P of a shear band, we place the new bond, with the

given orientation, as to continue the existing shear band above description. Also those new bonds could be associ-
ated with different shear bands or one single band growingat P (see Fig. 5a). Otherwise, we locate a local maximum

of c(t0, x, y) in the cell Cb and place the bond as a segment rapidly since there is no a priori limit in the rate of growth
of the shear band. In order to accurately describe theof the straight line passing through the local maximum and

with normal n. It may occur that a shear band will end at evolution of the shear bands we perform a series of cell
updates at partial timesteps in a way that at the end ofone of the cells surrounding Cb but the end point is not

on the boundary of Cb. In that case, after creating the new each partial timestep, only one cell is allocated a new bond,

FIG. 12. c as functions of t at P(0.462963, 0.5).
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and this occurs at values of stress c 5 cc. The process loading with an initial velocity v0(x1, x2) 5 0.26(2x1 2 1)
for 0 , x1, x2 , 1. The velocity is constant at the x1 bound-is described as follows: (a) After a regular time step

[tn, tn 1 Dt], we sweep over all the cells which were not aries v(t, 0, x2) 5 20.26 and v(t, 1, x2) 5 0.26. At the x2

boundaries, x2 5 0 and x2 5 1, we extend the data atintersected by shear bands at t 5 tn. We tag those cells
C1, ..., Cm, where the stress has gone beyond the critical the edge of the domain in a normal direction beyond the

physical domain. We remark that the data is given withoutyield value utu 5 cc. If no such cells are found, we terminate
the process. Otherwise (b) we write c(t, k) for the solution units since we are using a nondimensionalized model. We

refer to the Appendix in [13] for a more detailed descrip-of (23) at each Ck in [tn, tn 1 Dt] and for each k we find
the first tk such that c(tk, k) 5 cc. (c) We label t*kb

5 tion. The material constants are c 5 1 (elastic wave speed)
and h(c) 5 1 2 c. The inhomogeneity of this example ismink51,...mtk and integrate up to t*kb

at the hCk jm
k51 cells and

also at the cells intersected by the shear bands. This will introduced with a, the parameter that measures the degree
of non-associativity in the material. We consider a constantgive us the first cell Ckb

in which to place a shear band as
discussed above. With this procedure, all the cells that are value of a 5 0.261 across the domain except at the center

and cells immediately above and below for which we setrelevant to calculations on the shear bands are updated in
a consistent manner. Finally, we repeat the above process a 5 0.315. For this choice of parameters and initial data the

system is initially well posed and the material is deformingfrom time t 5 t*kb
, adding, if necessary, new cells to the

collection of tagged cells until we exhaust the time interval. plastically everywhere in the domain.
A shear band is formed at a short time after the initializa-Although the process is potentially computationally inten-

sive it is performed only during a small portion of the tion of the test. In Fig. 6 we show contour plots (a) for c
and (b) for v soon after the formation of the shear band.simulation. We remark that the subcycling with partial

timesteps is only applied (a) to the cells intersected by For a correct interpretation of the figures we remark that
if the material were homogeneous, the c plot would showshear bands and those potentially given rise to shear bands

but (b) only while the shear bands are growing. For exam- no contours (c would be constant) and the velocity plot
would consist of a series of vertical lines (velocity wouldple, in the simple case of a single band across the domain,

the above procedure affects only those cells on the band be constant on x2 and linear on x1).
The material continues to load driven by the gradientand cells directly ahead of the band tips, but only while

the band is growing. Once the band reaches the boundaries of v away from the band. We can observe already the
unloading fronts that propagate orthogonally from theof the domain, no more cells need to be tagged and this

iterative process is not entered. shear band as predicted in [15] and observed in previous
calculations for the one-dimensional case [6, 11]. We alsoWith this process we take into account the effect of

newly formed shear bands on their neighboring cells, either notice the increase in loading ahead of the endpoints of the
band which will cause the growth of the band as observed inby accelerating the loading rate (and possibly introducing

new band cells) or by unloading the nearby cells (and Figs. 7 and 8).
We study the orientation of the shear band. For theeliminating extraneous shear bands).

given initial stress t0 (with argument of 0.7 radians) and
the non-associativity parameter a (0.261 radians), we ex-
pect that the shear band will grow with a normal direction7. EXAMPLES
of 0.5695 radians (angle that the normal vector makes with
the x1 axis). This first approximation is obtained by noticingThe following example describes the deformation of

a prestressed material under uniform loading. The ini- that when a shear band is formed, its orientation is given
by rotating stress (clockwise) the stress at that point by antial data consists of constant stress and velocity on the

x2-directions and linear on the x1-direction. For this initial angle a/2. In this example we cannot predict the exact
value of stress at the point of formation of the shear band,data and a homogeneous sample (same material properties

across the domain) the deformation would maintain the but since the material has been prestressed to a level close
to the value of ill-posedness, we expect that the directionsame profile at all times; that is, the stress would remain

constant as a function of the space variables (but changing of the stress will not vary greatly from the initial direction.
We take this initial direction as the orientation of the shearwith time) and the velocity would be constant on time (see

[13]). We introduce an inhomogeneity in a small region at band and compare it with the numerical results. In the
numerical example, the orientation of the shear band isthe center of the domain, in effect lowering the threshold

for ill-posedness in system (5) and assuring that the shear approximately 0.5896 radians and differs from the pre-
dicted value by 0.02 radians.band will form first in this region.

The initial data in consideration consists of a stress with An important issue in this work is the accuracy of the
front tracking algorithm, including the strategy for movingmodulus ut0u 5 0.9766 and an argument of 0.7 radians. The

material is assumed to be at yield, that is, c0 5 ut0u and the endpoints of the shear band. An accurate algorithm
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FIG. 13. t2 as function of t at P(0.462963, 0.5).

can help us discover how the speed of propagation of the 107, and 189 3 189) with baseline values that correspond
shear band tip behaves. In Fig. 9 we compare the location to the same material sample but homogeneous and without
of the endpoints of the shear band for two grids of different a shear band. A first observation is the decay of the velocity
size (a coarse grid of 51 3 51 cells and a finer grid of (Fig. 11) and the evolution of c to a constant value (Fig. 12).
91 3 91 cells). Each graph shows the x1 and x2 coordinates These properties are predicted in the one dimensional case
of the initial point of the band and final point of the band, [15] in contrast with the case of a homogeneous sample
respectively, where the band is oriented in a direction of without shear bands [13], where the velocity remains con-
decreasing x1 and increasing x2 . We observe that the loca- stant and c grows steadily. A second observation is the
tion of the initial and final points is approximately the convergence of the solution as the grid is refined. We
same for both grids. observe oscillations that begin when the shear band begins

As a concluding remark we point out that numerical to grow. We remark that the band represents a change in
algorithm described in this paper allows for computations material properties, from hyperbolic to elliptic, as well as
where the growth of the shear band is greater than a cell from continuum to particulate. As the shear band grows,
per time step, the growth of the band is independent of the states on the new band cells undergo a fundamental
the grid size and the orientation of the computed band change. In particular, they move from a regime of critical
accurately follows the predicted values. loading to one of elastic unloading. Acoustic waves are

generated during this transition that propagate undamped
8. A CONVERGENCE TEST along the shear band. These fluctuations are easier to ob-

serve in quantities that have a small variance in time, suchIn this section we study the behavior of the solution
as velocity (Fig. 11) and utu, but harder to observe on thenear the tracked front. In order to allow for a longer period
components of the stress, t1 and t2 , which have a largerof loading we consider initial data with a smaller velocity
variance (Fig. 13). We remark that some experiments bygradient than in the previous example, v0(x1, x2 ) 5
Behringer [1] indicate the existence of fluctuations in stress0.02(2x1 2 1) for 0 , x1, x2 , 1. We set the stress to a
during shear with existing shear bands. These fluctuationsconstant value of ut0u 5 0.9769 and argument of 0.7 radians.
are explained by the dynamics of the motion at a molecularAlso, in order to minimize the initial effects of the tips of
scale. Our fluctuations are simply associated with the jumpthe shear band on the test point, we initialize a shear band
of the shear band tip across the next cell. Thus, although theof length 0.2 units at the center of the domain (see Fig.
fluctuations observed in this paper represent a reasonable10.) With this choice of data, the shear band does not
qualitative behavior, we do not claim that they representchange in length for a period of time. At t P 1.3, the band
the correct physics.starts to grow at the tips.

A better study of convergence of the solution under gridWe fix a point P with coordinates (0.462963, 0.5) on a
refinement requires a choice of finer grids and falls out ofcell (for the coarser grid) contiguous to the shear band
the scope of this paper. As an ongoing project we are(see Fig. 10). We analyze the behavior of the velocity v
developing a code which combines the front tracking tech-and of c as functions of time at the point P. We compare

these values for grids of different sizes (27 3 27, 107 3 nique explained in this paper with an adaptive mesh re-
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11. D. G. Schaeffer, M. Shearer, F. X. Garaizar, and J. Trangenstein,finement algorithm that focuses the computing effort in
‘‘Numerical Computations for Shear Bands in an Antiplane Shearthe regions near the shear band while allowing for larger
Model,’’ in Annual ARO Conference on Applied Mathematics and

cell elsewhere [7]. Computing, Vol. ARO 94-1, 1994, p. 15.
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